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Interplay Between Wetting and Phase Behavior
in Binary Polymer Films and Wedges: Monte Carlo
Simulations and Mean Field Calculations1

Marcus Müller2,3 and Kurt Binder4

Confining a binary mixture, one can profoundly alter its miscibility behavior.
The qualitative features of miscibility in confined geometry are rather uni-
versal and shared by polymer mixtures as well as small molecules, but the
unmixing transition in the bulk and the wetting transition are typically well
separated in polymer blends. The interplay between wetting and miscibility of
a symmetric polymer mixture via large-scale Monte Carlo simulations in the
framework of the bond fluctuation model and via numerical self–consistent
field calculations is studied. The film surfaces interact with the monomers
via short ranged potentials, and the wetting transition of the semi–infinite
system is of first order. It can be accurately located in the simulations by
measuring the surface and interface tensions and using Young’s equation.
If both surfaces in a film attract the same component, capillary condensa-
tion occurs and the critical point is close to the critical point of the bulk.
If surfaces attract different components, an interface localization/delocaliza-
tion occurs which gives rise to phase diagrams with two critical points in
the vicinity of the pre-wetting critical point of the semi–infinite system. The
crossover between these two types of phase diagrams as a function of the
surface field asymmetry is studied. The dependence of the phase diagram on
the film thickness � for antisymmetric surface fields is investigated. Upon
decreasing the film thickness, the two critical points approach the symmetry
axis of the phase diagram, and below a certain thickness �tri, there remains
only a single critical point at the symmetric composition. This corresponds to
a second-order interface localization/delocalization transition even though the
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wetting transition is of first order. At a specific film thickness, �tri, tricritical
behavior is found. The behavior of antisymmetric films is compared with the
phase behavior in an antisymmetric double wedge. While the former is the
analog of the wetting transition of a planar surface, the latter is related to
the filling behavior of a single wedge. Evidence for a second-order interface
localization/delocalization transition in an antisymmetric double wedge is pre-
sented, and its unconventional critical behavior is related to the predictions
of Parry et al. (Phys. Rev. Lett. 83:5535 (1999)) for wedge filling. The crit-
ical behavior differs from the Ising universality class and is characterized by
strong anisotropic fluctuations.

KEY WORDS: confined geometry; finite size scaling; Monte Carlo simula-
tion; phase diagram; self-consistent field theory

1. INTRODUCTION

Confining a binary mixture, one can profoundly alter its miscibility
behavior [1–4]. The phase behavior of AB mixtures in pores, slits, and
films has attracted abiding interest from both theorists and experimental-
ists [5–7]. We study the interplay between (pre)wetting and phase behav-
ior by self-consistent field (SCF) theory [8,9] and Monte Carlo simulations
[10–12]. Particularly, we focus on situations where surfaces attract different
components of the mixture.

The qualitative features of the miscibility in confined geometry are
rather universal and shared by polymer mixtures as well as small mol-
ecules. Symmetric binary polymer blends are, however, particularly well
suited to study the interplay between wetting and miscibility: (i) the wet-
ting transition temperature typically is much lower than the critical tem-
perature, where demixing occurs in the bulk [10] and (ii) fluctuations can
be controlled by the degree of interdigitation [9,13]: the more extended the
molecule is, the larger is the number of neighbors it interacts with, and
the smaller is the effect of fluctuations. Therefore, SCF calculations pro-
vide an accurate description for many properties except for the ultimate
vicinity of critical points. The spatial extension of the molecules also sets
the length scale of enrichment layers and facilitates experimental investiga-
tions. (iii) The vapor pressure of polymer films is vanishingly small; hence,
effects of evaporation can be neglected. (iv) Polymers tend not to crystal-
lize easily. Therefore, wetting phenomena might not be preempted by crys-
tal phases. The blend components have to be liquid and must not arrest
in a glassy state. These criteria can be met by experimental systems, and
wetting transitions in polymer blends have been studied in recent experi-
ments [6,7]. Likewise, there is no roughening transition of the interface as
it occurs in Ising-like models.
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Using a coarse-grained polymer [13,14] model for an AB binary melt,
we locate the first-order wetting transition, the phase diagram in a sym-
metric slit pore (symmetric film) [10], and the phase diagram in a thin film
where the substrate favors the A-component of the mixture with the same
strength as the top surface attracts the B-component (antisymmetric film)
[9,11]. Then we discuss the phase behavior in a quadratic pore where two
neighboring surfaces favor the A-component and the other two neighbor-
ing surfaces favor the B-component (antisymmetric double wedge) [15,16].
We conclude with an outlook.

2. MODEL AND TECHNIQUES

We consider a binary polymer blend. Both species – A and B – con-
tain the same number N of monomers and have the same spatial extension
Re. They are confined into a thin film; the bottom substrate (W) might
be a silicon wafer, while the other surface might be the interface to the
vapor (vacuum, V). Depending on the ratio between the interface tension
γAB between the segregated bulk phases and the surface tension γAV , γBV

of the components and the vapor, the upper surface might not be per-
fectly flat but its shape is dictated by the balance of interface and sur-
face tensions. The qualitative behavior is illustrated in Fig. 1. If the AB

interface tension is comparable to the liquid/vapor tension, it “drags” the
film surface towards the substrate so as to reduce the length of the AB

interface. If the liquid/vapor tension exceeds the AB interface tension by
about two orders of magnitude, however, the surface is almost flat and the
situation is equivalent to a binary mixture between two hard walls a dis-
tance � apart [17]. In the following we shall restrict ourselves to this limit
γAB �γAV or γBV .

In the Monte Carlo simulations we use a computationally efficient,
coarse-grained lattice model. The bond fluctuation model [13,14] retains
the universal features of polymers – connectivity, excluded volume of seg-
ments, and a thermal interaction which leads to phase separation – but
ignores details of chemical structure. Effective monomers prevent the cor-
ners of a unit cell of a 3D cubic lattice from double occupancy. We use
chain length N = 32 and Re ≈ 17u. Monomers along a chain are con-
nected via bond vectors of length 2,

√
5,

√
6,3, or

√
10 in units of the

lattice spacing u. Different monomers repel each other by a square-well
potential of depth ε which comprises the nearest 54 neighbors, like mono-
mers attract each other. The strength of the repulsion is proportional to
the Flory–Huggins parameter χ = 5.3ε/(kBT ) [13]. Surfaces are structure-
less and impenetrable. They act on monomers in the two nearest layers
(dwall = 2) with strength εwall. The range, dwall, of the monomer–surface
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Fig. 1. Laterally segregated binary film. The shape of inter-
faces is obtained by minimizing the effective Hamiltonian
H = γABLAB + γASLAS + γBSLBS + γAV LAV + γBV LBV at
fixed volume of the components. Lij denotes the length
of the interface between substances i and j , and γij the
corresponding interface tension. γAV − γBV = γAS − γBS =
0.5γAB , γBS =γAB and γAV /γAB as indicated in the key from
Ref. [17].

potential is chosen such that dwall ≈ ∫ dwall
0 dz �(z)/�bulk where �(z)

denotes the monomer density profile in the z-direction perpendicular to
the substrate. Note that �(z) exhibits strong layering effects in the vicinity
of the surface because the sizes of the monomers and vacancies differ.

In the SCF calculations we model the polymers as Gaussian chains
[8,9,18]. The repulsion between different species is quantified by the Flory-
Huggins parameter χ . Short-ranged interactions of strength �1 and �2
attract (repel) the A (B) component in the vicinity of the surfaces,
�1 = −�2 ≈ εwalldwall

kBT Re
. The total density profile of the film is imposed.

It smoothly decays to zero at the surfaces in a boundary region of
width 0.15Re. The blend is assumed to be incompressible. This standard
Gaussian chain model is solved within the mean-field approximation.

3. WETTING TRANSITION

To accurately locate the wetting transition and calculate the contact
angle of macroscopic A-drops we use Young’s equation [19] γAB cos� =
γWB − γWA. Computationally, this technique [10,20] has distinct advanta-
ges for locating first-order wetting transitions: (i) The interface free energy
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γAB and the difference �γ = γWB − γWA can be measured accurately in
separate simulations thereby avoiding the need for huge simulation cells
to simulate a thick A-layer at the surface in equilibrium with a B-rich
bulk. (ii) Unlike observing the dependence of the thickness of the A-layer
on temperature or monomer-surface attraction, one directly measures free
energies. Therefore, we do accurately locate the transition, while the insta-
bility of the A-rich layer is located between the transition and the mean-
field wetting spinodal. (iii) By virtue of the A�B symmetry, the difference
�γ can also be rewritten as the difference �γ = γWB − γ−WB of surface
tensions of a wall that attract the A-component and a wall that attracts
the B-component. This free energy difference can be measured by thermo-
dynamic integration or expanded ensemble methods [10].

The results for our model are presented in Fig. 2. From the cross-
ing of γAB(ε) and �γ (ε), we locate the wetting transition. The fact that
curves intersect under a finite angle indicates that the wetting transitions
are of first order. As we reduce the monomer-surface attraction, the wet-
ting transition shifts to higher temperatures kBT /ε and become weaker.
For all incompatibilities studied, however, the wetting transition is of first
order. This is also corroborated by SCF calculations [9,21], where we find
first-order wetting transitions for T/Tc <0.98.

If the wetting transition is of first order, then there will be only a
small A-rich layer in the non-wet state. By virtue of the structural sym-
metry of the molecules, they lose the same amount of entropy as they
pack against the surface. The surface free energy difference �γ is mainly
enthalpic. If we assume that the wetting transition is strongly first order,
we can neglect the microscopic enrichment layer at the surface. Within this
approximation the surface compositions in the non-wet state and the wet
state are �(z=0)≈0 and 1, respectively, and we obtain �γ =2εwalldwall�,
where dwall =2 denotes the range of the monomer-surface interaction and
� = 1/16 is the monomer number density. Using the expression for the
interface tension γAB =�b

√
χ/6 (b=3.05: statistical segment length) in the

strong segregation limit [22], we obtain χwet =24
(

εwetdwet
bkBT

)2
.

This is in marked contrast to the value of the Flory–Huggins param-
eter at the unmixing transition in the bulk, χc = 2/N ∼ 1/Tc. As both the
interface tension γAB and the difference in surface tension �γ are chain-
length independent, so is the wetting transition temperature. The fact that
the interface and surface tensions are independent from the chain length is
also observed in experiments in the limit of long chain lengths. The critical
temperature Tc of phase separation, however, increases linearly with chain
length N . Therefore, critical phenomena associated with the bulk unmixing
and wetting phenomena are well separated.
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Fig. 2. Interface tension γAB and difference in surface
tensions �γ as a function of inverse temperature
ε/(kBT ) obtained from simulations. Approxima-
tions for the interface tension γAB = b�

√
χ/6 and

�γ = 2�dwallεwall = εwall/4 in the strong segregation limit
are also shown. [from Ref. [10]] The inset shows the
dependence of the contact angle on εwall for the two
temperatures investigated in Section 5.

4. THIN FILMS

4.1. Capillary Condensation and Interface Localization/Delocalization

If the mixture is confined into a film, the surface interactions modify
the phase behavior. As wetting is associated with the growth of an infi-
nitely large enrichment layer, it is rounded-off in a thin film [4]. If the
wetting transition is of first order, there will be a pre-wetting transition
[1]: a coexistence between a thin and thick (but microscopic) enrichment
layer at a chemical potential which differs from the value at coexistence
in the bulk. As pre-wetting transitions involve only enrichment layers of
finite thickness, they might give rise to transitions in thin films.

First we consider a film with symmetric surfaces [10,12], i.e., both sur-
faces attract the A component. The phase diagram as obtained from the
simulations is presented in Fig. 3. Compared to the phase behavior in the
bulk, the critical point is shifted to lower temperatures and larger compo-
sition of the species attracted by the surfaces. Moreover, the binodals in
the vicinity of the critical points exhibit two-dimensional (2D) Ising crit-
ical behavior in contrast to the 3D Ising behavior of the bulk unmixing
transition.
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Fig. 3. Phase diagram in terms of composition and tem-
perature for film thickness � ≈ 2.8Re as obtained from
simulations. The arrow marks the wetting transition tem-
perature. εwall =0.16kBT [from Ref. [11]].

Note the pronounced distortion of the B-rich binodal in the vicinity
of the wetting transition. In the B-rich phase there are A-rich layers at the
surfaces and the B component prevails in the middle of the film. In the
vicinity of the wetting transition the thickness of the A-enrichment layers
grows as we increase the temperature. If we increased the film thickness,
this distortion would evolve into an additional two-phase region [10,23],
corresponding to a B-rich phase with thin and thick A-layers at the sur-
face. This two-phase region would correspond to the pre-wetting coexis-
tence and it would join the B-rich binodal in a triple point.

The phase diagram of an antisymmetric film is also presented in
Fig. 3. In this case one surface attracts the A-component with exactly the
same strength as the other surface, the B-component. The phase diagram
contains two critical points and a triple line [8,9,11]. Around the criti-
cal temperature of the bulk, enrichment layers gradually form at the sur-
faces and stabilize an AB interface that runs parallel to the surfaces. At
the interface localization/delocalization transition [24–26], this AB inter-
face becomes bound to one of the surfaces. In the case of a first-order
interface localization/delocalization transition, this corresponds to a triple
point of the phase diagram: an A-rich phase, a B-rich phase, and a phase
with symmetric composition coexist.

The behavior can be analyzed qualitatively by looking at the inter-
face potential g(l) which describes the interaction between an AB interface
and a single surface. If the film is thick enough, the interface potential
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Fig. 4. (a) Schematic temperature dependence of the effective interface potential in a
film with antisymmetric surfaces. The temperatures correspond to (from bottom to top)
T <Ttrip, Ttrip, Ttrip <T <T film

c and T film
c . (b) Phase diagram of a mixture. (c) Sketches of

typical configurations for T > T film
c (upper panel), Ttrip < T < T film

c in the miscibility gap
(middle panel) and T <Ttrip (lower panel) [from Ref. [12]].

can be constructed as a superposition of the interface potentials emerg-
ing from each surface. The qualitative behavior in the vicinity of a first-
order wetting transition is depicted in Fig. 4a. Using a double-tangent
construction, we can deduce the phase behavior in a thin film. At low
temperatures there coexist an A-rich phase and a B-rich phase, in which
the AB interface is localized at the surface. Upon increasing the tempera-
ture, one encounters the triple point. This triple point is the thin film ana-
log of the first-order wetting transition. As the film thickness increases, the
triple temperature converges towards the wetting transition temperature of
the semi-infinite system. Above the triple temperature, there are two-phase
coexistence regions, which correspond to thin and thick enrichment layers
at the surfaces. This is the analog of the pre-wetting transition in a thin
film.

4.2. Tricritical Interface Localization/Delocalization Transition

If we reduce the film thickness, the interactions emerging from each
surface interfere. The phenomenological considerations [11] explain that
this leads to a second-order interface localization/delocalization transition
at small film thicknesses. Both regimes are separated by a tricritical tran-
sition. The scaled distribution functions prove convenient to locate the
tricritical thickness accurately. To this end we have adjusted the temper-
ature such that the central peak of the probability distribution of the
order parameter m∼φA −φB is a factor 1.2 higher than the outer peaks.
This corresponds to the behavior of the universal distribution of the 2D
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Fig. 5. Probability distribution for various film thick-
nesses as indicated in the key scaled to unit norm and
variance. The lateral system size is L= 96. The universal
distribution of the 2D tricritical universality class [27] is
presented by circles [from Ref. [11]].

tricritical universality class [27]. The results for various film thicknesses �

(in units of the lattice spacing) are presented in Fig. 5. For � < �tri the
valleys between the three peaks are too shallow (cf. Fig. 5), while they are
too deep for �>�tri. In the latter case the transition is of first order and
our estimate tends towards the triple temperature. At �tri ≈ 14 = 0.89Re

the distribution of our simulations is similar to the universal 2DT distri-
bution, and this has been confirmed for larger lateral system sizes [11].

4.3. Crossover from Capillary Condensation to Interface
Localization/Delocalization

Realizing strictly (anti)symmetric surface interactions is often difficult
in experiments. Varying the surface interaction �2N of the top surface
from attracting the A-component to attracting the B-component (while
the bottom surface always attracts the A-component with fixed strength
�1N ), we study the crossover from capillary condensation for symmetric
surfaces to interface localization/delocalization for antisymmetric surfaces.
The dependence of the phase diagram on the surface interactions within
the SCF calculations is presented in Fig. 6. For symmetric surfaces (capil-
lary condensation) the critical point is shifted towards lower temperatures
[4] similar to the simulation result. Of course, the binodals are parabolic in
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Fig. 6. (a) Binodals for �0 = 2.6Re and surface interaction �1N = 0.5 obtained from
SCF calculations. The surface interaction at the other surface �2N varies as indicated in
the key. The dashed curve shows the location of the critical points. Filled circles mark
critical points, open circles/dashed horizontal lines denote three–phase coexistence for
�2N = −0.3675 and −0.5. (b) Coexistence curves in the χN -�µ plane. The “quasi-pre-
wetting” lines for �µ < 0 and �2N = −0.3675 and −0.5 are indistinguishable, because
they are associated with the pre-wetting behavior of the surface with interaction �1N =
+0.5 [from Ref. [8]].

mean field theory independent from dimensionality. The coexisting phases
have almost uniform composition across the film and differ in their com-
position. As we reduce the preference of the top surface for species B, the
critical point and the critical composition tend towards their bulk values
(φ = 0.5, 1/χN = 0.5), i.e., the critical temperature increases and the criti-
cal composition becomes more symmetric [8]. The coexistence curve in the
1/χN -�µ plane approaches the symmetry axis. Upon making the top sur-
face attracting the other component B, we gradually change the charac-
ter of the phase transition towards an interface localization/delocalization
transition [24,25]. The critical temperature passes through a maximum and
the critical composition through a minimum. For �2N <0 (surface attract-
ing the B-component) there are enrichment layers of the A-component
at the bottom and the B-component at the top, and the two coexisting
phases differ in the location of the AB interface which runs parallel to the
surfaces. As the preferential interaction of the top surface increases, the
critical temperature decreases and the critical composition becomes richer
in A. When the coexistence curve intersects the pre-wetting line of the
bottom surface at �µ< 0, a triple point forms at which an A-rich phase
and two B-rich phases with a thin and a thick A-enrichment layer coex-
ist. When the bottom surface attracts A with exactly the same strength
as the top surface B (antisymmetric surfaces), the phase diagram becomes
symmetric.
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For symmetric surface fields the critical point occurs close to the bulk
critical point (and converges towards it in the limit of infinite film thick-
ness) while the critical points in antisymmetric films are associated with
the wetting transition and converge towards the pre-wetting critical tem-
perature of the semi-infinite system (if the wetting transition is of first
order) for �→∞. In both cases, however, critical points belong to the 2D
Ising universality class.

5. INTERFACE LOCALIZATION/DELOCALIZATION
IN AN ANTISYMMETRIC DOUBLE WEDGE

5.1. Background

In the following we consider wetting (or rather filling) in a wedge
geometry. Macroscopic considerations show that the wedge will be filled
with liquid when the contact angle � on a planar substrate equals the
opening angle α. Intriguingly, Parry and co-workers [28] predict that the
filling of a wedge is related to the strong fluctuation regime of critical wet-
ting and that critical filling may even occur if the concomitant wetting
transition of the planar surface is of first order. Specifically, they predicted
the distance l0 of the AB interface from the bottom of a wedge to diverge
as l0 ∼ (Tf − T )−βs with βs = 1/4. Correlations along the wedge and in
the other two directions are characterized by diverging correlation lengths,
ξy ∼ (Tf − T )−νy and ξx ∼ ξ⊥ ∼ (Tf − T )−ν⊥ , with exponents νy = 3/4 and
ν⊥ =1/4, respectively.

In the following we study a wedge with an opening angle α=π/4 of the
wedge (c.f. Fig. 7). Similar to the study of wetting, an antisymmetric geom-
etry is advantageous. Therefore, we stack two wedges which attract different
components on top of each other. This antisymmetric double wedge is a
pore with a quadratic cross section of size L×L. Let Ly denote the length
of the wedge (c.f. Fig. 7). (i) If we used identical surface fields on all four free
surfaces, the analog of capillary condensation would occur in a wedge, i.e.,
phase coexistence would be shifted away from the bulk coexistence curve
and the wetting layers would be only metastable (with respect to “wedge
condensation”). (ii) As the wetting layer grew on all four surfaces in the
case of symmetric boundaries, we would need larger system sizes to reduce
interactions between the wetting layers across the wedge.

The phase behavior in such an antisymmetric double wedge geome-
try has been studied recently in the framework of an Ising model [15,16].
When the wetting transition of the planar substrate was of first order,
the wedge filling was also found to be of first order. When the wetting
transition was of second order, an unconventional scaling behavior was
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Fig. 7. Antisymmetric double wedge: periodic boundary
conditions apply along the y-direction and there are 4
impenetrable surfaces of size L × Ly . The bottom ones
(W1) attract the A-component with strength εwall and the
top ones (W2) attract the B-component. l0 denotes the
position of the interface from one corner [from Ref. [15]].

observed which is characterized by critical exponents α = 3/4, β = 0, and
γ = 5/4. Those critical exponents can be related (see below) to the expo-
nents of critical wedge filling, and the simulations of the Ising model con-
firm the predictions of Parry and co-workers [28].

In the following we corroborate these findings in the framework of the
Ising model by our polymer simulations. Moreover, we present evidence for
the unconventional second-order transition in an antisymmetric double wedge
even though the wetting transition on a planar substrate is of first order.

We present preliminary simulation data for two temperatures:
ε/(kBT ) = 0.025 (T/Tc = 0.58) and ε/(kBT ) = 0.05 (T/Tc = 0.29). At both
temperatures the wetting transitions, which occur at an appropriate attrac-
tive strength εwall of planar surfaces, are of first order (c.f. Fig. 2). In the
former case, it is a weak first-order wetting transition; in the latter case, it
is a strong first-order transition.

5.2. First-Order Transition in an Antisymmetric Double Wedge

At the lower temperature ε/(kBT )=0.05, the behavior is similar to a
first-order interface localization/delocalization transition. We consider here
only the case �µ = 0 where phase coexistence in the bulk occurs. This
excludes the rather interesting interplay between pre-wetting and pre-filling
behavior studied in Ref. [29]. At large surface interaction εwall >ε

trip,wedge
wall ,
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Fig. 8. The probability distribution of the composition
at ε/(kBT )=0.05 and system geometry 642 ×228 exhibits
a three-peak structure, which is characteristic of a first-
order transition. The inset shows the dependence of the
cumulant 〈m2〉/〈|m|〉2 with m ∼ φ − 1/2 on εwall for three
different system sizes.

there runs an AB interface along the diagonal which divides the two dou-
ble wedges. This corresponds to the delocalized state. Upon decreasing
εwall (or decreasing the temperature), the AB interface becomes localized
in one of the wedges. In this case the composition of the double wedge is
either A-rich or B-rich and we define as order parameter m≡φA −φB . The
two situations are separated by a triple point ε

trip,wedge
wall at which the inter-

face can be localized in either of the wedges or delocalized on the diag-
onal. The trimodal probability distribution in the vicinity of the tricritical
point is presented in Fig. 8. In analogy to the case of antisymmetric films,
we expect this triple point in a double wedge to correspond to a first-order
filling transition. In the inset we show the cumulant 〈m2〉/〈|m|〉2. If the
transition was of second order, these cumulants would depend monoton-
ically on εwall and would exhibit a common intersection point. This is
not at all what we observe, and we conclude that the interface localiza-
tion/delocalization transition in the double wedge is of first order at the
lower temperature ε/(kBT )=0.05.

5.3. Critical Behavior in an Antisymmetric Double Wedge

Even though the wetting transition on a planar surface at ε/(kBT )=
0.025 is of first order, the behavior at the interface localization/delocalization
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Fig. 9. (a) Dependence of the absolute order parameter m ≡ |φA − φB | on the surface
interactions εwall at ε/(kBT ) = 0.05. The insert shows the cumulant. (b) Scaling of the
probability distribution at εwall =0.035 and various system sizes.

transition in an antisymmetric double wedge at high temperature differs
from the transition at low temperature. In the inset of Fig. 9a we present
the dependence of the cumulant on the surface interaction strength for var-
ious system sizes. The cumulants depend monotonically on εwall and exhibit
a common intersection point around εcrit

wall ≈ 0.035. In Fig. 9b we show the
probability distribution of the composition φ at this intersection point: the
distribution is bimodal, and the two largest system sizes collapse onto a
master curve without any size dependent prefactor. Therefore we conclude
that the interface localization/delocalization transition is of second order.5

Intriguingly there are also marked differences between this second-
order transition in an antisymmetric double wedge and the second-order
transition in a thin film which belongs to the 2D Ising universality class. In
the latter case, only the distribution of the scaled order parameter Lβ/νm,
where β = 1/8 and ν = 1 are the critical exponents of the order parame-
ter and the correlation length in the 2D Ising universality class, exhibits
data collapse for different system sizes. Moreover, we present in Fig. 9a the
dependence of the absolute value of the magnetization in the vicinity of
the transition. Curves for different system sizes exhibit a common intersec-
tion point which agrees well with the intersection point of the cumulants.
The analogous curves at an Ising-like transition do not exhibit a common

5 The interface localization/delocalization transition might be of second order in a very
thin antisymmetric film (c.f. Section 4.2) even if the wetting transition is of first order.
Therefore still larger system sizes would be desirable to confirm this conclusion. We note
however, that the thickness of the enrichment layer at the first-order wetting transition
of the planar substrate (ε/(kBT )=0.0226, εwet

wall/(kBT )=0.04) is only l0 ≈4�45.2=L/
√

2.
Therefore we believe that our conclusion is not affected by finite size effects.



462 Müller and Binder

intersection point but monotonically converge towards 〈|m|〉∼ |T −Tc|β for
T <Tc and 〈|m|〉≡0 for T �Tc upon increasing the system size.

To relate the critical behavior of the antisymmetric double wedge to
the predictions of Parry et al. [28], we regard the distance l0 of the AB

interface from the corner of one wedge. Similar to an antisymmetric film
(c.f. Section 4.1), we assume that we can approximate the distribution in
a double wedge by the superposition of the distributions of single wedges
Pwedge(l0) via P(l0)∼Pwedge(l0)+Pwedge(

√
2L− l0) If the two distributions,

Pwedge(l0) and Pwedge(
√

2L− l0), do not overlap, the AB interface will be
located in either of the two wedges and the order parameter will not van-
ish. If the two distributions overlap, the interface fluctuates around the
diagonal and the order parameter will be zero. Right at the transition the
two distributions begin to overlap:

〈l0〉+ ξ⊥
!=

√
2L−〈l0〉− ξ⊥

(interface localization/delocalization in double wedge) (1)

where 〈l0〉 denotes the mean height in a single wedge and ξ⊥ denotes its
fluctuations. Importantly, Parry’s prediction of β0 =ν⊥ in wedges (and also
corners [30]) means that the height and its fluctuations are of the same
order. They diverge in the same way as we approach the critical filling
transition.

The height of the interface l0 is related to the order parameter m of
the localization/delocalization transition. Therefore, we expect the distribu-
tion of the order parameter also to be bimodal. As l0 ∼ξ ∼L at the transi-
tion and the order parameter is a function of l0/L, the distribution of the
order parameter will exhibit two peaks whose positions and widths will
not depend on the system size. This is exactly what we observe in Fig. 9b.
Using this observation and the standard finite size scaling assumption at
a second-order phase transition,

P(m)∼Lβ/ν⊥P̃(Lβ/ν⊥m,L/ξ⊥,Ly/ξy)∼Lβ/ν⊥P(Lβ/ν⊥m,L1/ν⊥ t, η) (2)

where P̃ and P are scaling functions, t = (T −Tf )/Tf denotes the relative
distance to the filling transition, and η ≡ Ly/L

νy/ν⊥ = Ly/L
3 denotes the

generalized aspect ratio, we conclude β/ν⊥ = 0. Due to the anisotropy of
the fluctuations of the interface along the wedge with correlation length ξy

and perpendicular to the wedge with correlation length ξ⊥, the generalized
aspect ratio appears as a scaling variable. In our simulations we have chosen
the system geometry such that η remains approximately constant to ensure
that finite-size rounding in the direction along the wedge and the rounding
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in the two other directions set in simultaneously.6 Hence, the scaling of the
probability distribution not only confirms β =0 but also νy =3ν⊥.

Knowing the probability distribution of the order parameter, we can
calculate all its moments:

〈mk〉=Mk(L
1/ν⊥ t, η) (3)

where Mk are scaling functions. As a special case, we calculate the suscep-
tibility: χ = L2Ly〈m2〉/kBT ∼ L2LyM̃2(L/ξ⊥,Ly/ξy) ∼ ξ2

⊥ξy ∼ t−2ν⊥−νy ≡
t−γ with γ = 2ν⊥ + νy = 5/4. Gratifyingly, these values for the exponents
comply with the anisotropic hyperscaling relation [31], γ +2β = (d −1)ν⊥ +
νy . Using thermodynamic scaling 2−α=γ +2β, we infer the critical expo-
nent α = 3/4 for the specific heat. Another consequence of the absence
of any L-dependent prefactor in Eq. (3) is the common intersection of
moments of the order parameter at the transition. Again this is an agree-
ment with our observation in Fig. 8a. As this intersection involves only
the lowest moment of the order parameter, it yields an accurate estimate
of the location of the critical interface localization/delocalization transition
in an antisymmetric double wedge.

It is interesting to relate the observation of first- and second-order
interface localization/delocalization transitions in a double wedge to the
shape of the interface potential. Parry et al. [28] predict that the filling
transition is second order if the interface potential between an AB inter-
face and a planar surface does not exhibit a free energy barrier between
the minimum close to the surface and the behavior at large distances, i.e.,
if a macroscopically thick film is not even metastable.

In Fig. 10 we present the interface potential obtained from the proba-
bility distribution of the composition in a simulation of an antisymmetric
film at ε/(kBT )=0.025. In the vicinity of the wetting transition the inter-
face potential exhibits a maximum between the minimum close to the sur-
face and the value at large distances. This fact confirms that the wetting
transition is of first order. At the smaller value of εwall, however, there is
no such maximum within the statistical uncertainty of the Monte Carlo
data and, in agreement with Parry’s predictions, we observe a second-order
transition in the double wedge.

6 If we kept the ratio Ly/L constant η→0 and the system would exhibit a behavior character-
istic of a corner. In the limit L fixed but Ly →∞ the wedge becomes quasi-one-dimensional
and there is no transition [16].
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Fig. 10. The probability distribution of the composition
in an antisymmetric film with system geometry 482 × 96.
Values of ε/(kBT ) and εwall/(kBT ) (shown in the key)
correspond to the wetting transition and the filling tran-
sition (according to Young’s equation). The inset presents
an enlarged view of the same graph (− ln P(φ)γABL2 vs.
Lyφ) for the filling transitions at high (dashed line) and
low (solid line) temperatures. The maximum of the inter-
face potential indicates that the filling transition is of first
order at low temperatures, and its absence is the hallmark
of a second-order filling transition at high temperatures.
Note that the wetting transition is of first order at both
temperatures.

6. SUMMARY

We have investigated the interplay between wetting and phase separa-
tion of incompressible binary mixtures confined in thin films and wedges.
In our polymer model the wetting transition is of first order and we
can accurately locate it via Young’s equation. The concomitant pre-wet-
ting behavior modifies the phase boundaries in thin films. If both surfaces
attract the same component, capillary condensation occurs and the crit-
ical point is close to the critical unmixing transition in the bulk. If one
surface attracts the A-component but the other attracts the B-component,
an interface localization/delocalization transition occurs. In this case there
are two critical points which correspond to the pre-wetting critical points
at each surface. If the film thickness is very small, however, the inter-
face localization/delocalization transition might be of second order even if
the wetting transition is of first order. The critical points in a thin film are
characterized by Ising critical behavior.
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In analogy to the interface localization/delocalization in an antisym-
metric film, we have studied the transition in an antisymmetric double
wedge and we relate the phase behavior to the filling transition in a single
wedge. Importantly, we present evidence that the analog of critical filling
in an antisymmetric double wedge geometry gives rise to unconventional
critical behavior characterized by an order parameter exponent β = 0 and
strong anisotropic fluctuations [15]. We can relate the critical exponents to
the predictions of Parry et al. [28] on critical filling. In agreement with
those predictions the filling transition can be critical even though the wet-
ting transition on a planar substrate is of first order. This is practically
important because there is no experimental realization of critical wetting
on a solid substrate. Our findings suggests the polymer blends might be
promising candidates to explore the filling behavior experimentally.
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